Microbial dysbiosis sculpts a systemic ILC3/IL-17 axis governing lung inflammatory responses. Ahmed Kabil

Spread the love

Mucosal Immunol. 2025 Jul 20:S1933-0219(25)00073-X. doi: 10.1016/j.mucimm.2025.07.002. Online ahead of print.

ABSTRACT

Advancements in vaccination and sanitation have significantly reduced the prevalence and burden of infectious diseases; however, these benefits have coincided with a marked rise in autoimmune and allergic disorders. Recent studies have investigated these linked trends through the lens of host-microbiome alterations, proposing these shifts as a potential explanatory mechanism. Previously, we demonstrated that vancomycin-induced depletion of short-chain fatty acid (SCFA)-producing bacteria results in hyperactivation of ILC2s and exacerbated allergic responses. Here we investigate the effects of low-dose streptomycin on innate and adaptive immune cell populations and their activation states. Although streptomycin-treated mice exhibit normal allergic responses, they display heightened susceptibility to Th1/Th17-mediated disease, specifically hypersensitivity pneumonitis (HP). This is characterized by a two-fold increase in ILC3s and Th17 cells in the lungs, alongside activation of antigen-presenting cells (APCs) at steady state-an effect that is further amplified upon exposure to HP-inducing agents. Shotgun metagenomic analysis revealed that streptomycin-induced dysbiosis reduces microbial diversity, depletes bile acid-metabolizing bacteria, and enriches for metabolic pathways involved in branched-chain amino acid biosynthesis, including leucine-a known activator of mTORC1. Strikingly, administration of the secondary bile acid metabolite isolithocholic acid (an inverse agonist of RORγt), or an IL-23 neutralizing antibody, reverses the enhanced susceptibility to HP. Inhibition of mTORC1 significantly reduced Th17/ILC3 responses and histopathology. Our findings underscore microbial equilibrium as a key determinant of susceptibility to HP and uncover a positive feedback loop between IL and 23-producing APCs and ILC3/Th17 cells that mechanistically links dysbiosis to sustained type 3 inflammation, and we identify a simple, actionable means of intervention.

PMID:40695364 | DOI:10.1016/j.mucimm.2025.07.002

Leave a Comment

deneme bonusu veren siteler - canlı bahis siteleri - casino siteleri casino siteleri deneme bonusu veren siteler canlı casino siteleri